Tag Archives: Licensing

New data about academic technology transfer to startups

Nathan Benaich is very unhappy with technology transfer in the UK and he is probably right to be. For many years I had noticed that British academic institutions often took more than a 25% ownership in a startup in exchange for a license of intellectual property, whereas the standard figure in the USA and continental Europe is more in the 5-10% range. He had published a very interesting article in May 2021, Rewriting the European spinout playbook where he was complaining about a lack of transparency and very frustrating processes.

He is now working on a new set of data provided by founders that he makes freely available on spinout.fyi. He is asking for help and any interested founder should provide a little if she can. I downloaded his data and provide here my own analysis although Nathan has his own here. You should read it. Here is a first set of tables:

If you do not like tables and even if you do, here are more figures:

And because I had done a similar research some years ago, posted here as How much Equity Universities take in Start-ups from IP Licensing?, I did the exercise of combining his and my data. This is a set of 190+ companies! You will see the equity ownership per domain and per region.

So what are the lessons? The UK is a clear outlier, but what is more striking is the volatility in the numbers. And why is that? Some professional claim each startup is different. I disagree. Strongly! The lack of transparency in the policies is the reason of the volatility. Founders seldom know how they will be treated. This is why I was so happy with EPFL publishing its policy. See my recent post Technology Transfer according to EPFL and Rules for Startups.

I really hope that Nathan Benaich’s effort will help in bringing a much needed transparency in these numbers!

Technology Transfer according to EPFL and Rules for Startups

Technology transfer has best practices but it is not so easy to read about them. The Technology Transfer Office (TTO) at Ecole Polytechnique de Lausanne (EPFL) had the great idea to publish how it manages the specific situation of startup creation. In March 2022, it published its New Guidelines for start-ups at EPFL. It is a very interesting document and I advise people curious about the topic to read it. “I wish I had it when I launched my start-up!” claims one of the EPFL entrepreneur. At the same time, the head of EPFL’S TTO was interviewed by Nature Communication and the document is worth reading too. Here is the link : A conversation on technology transfer. I will quote it at the end of the post.

Here are some data:

– For exclusive licenses, EPFL obtains either a number of shares equivalent to 10% of the start-up capital stock at incorporation, or a lower share of the capital stock that is undiluted until the start-up has received a certain amount of equity investment, e.g. 5% of capital share undiluted until the total accumulated investment reaches the amount of 5 MCHF, regardless of the value of the company.

Royalties are applicable on sales and depend on the industry
Pharma 2–5%
Medtech 2–4%
Sensors, optics and robotics 1.5–3%
Environmental sciences & energy 1–3%
Computer and communication 1.5–3%
Semiconductors 1–3%
Software 1-25%
(this last % may be surprising and I assume it applies to licenses of fully usable software as a product)

– Exit : At the time of exit, EPFL will diligently consider any request of a start-up to transfer the licensed patents to an acquiring company that is committed and that has the capacity to further develop and commercialize the technology. The companies shall furnish the necessary business information to allow EPFL to understand the needs of such a transfer, and in the case of a royalty buyout to make a valuation of the licensed patents in terms of potential sales.

As promised some interesting elements from the interview. The words in bold are my choice.

“Contrary to what might be expected, the main factor is not necessarily the idea or technology itself, but people’s involvement. The actual and future commitment of the individuals involved in the commercialization of the technology is paramount, both on the academic and industrial sides. The commercialization of technologies is a long journey, from development, through de-risking, including prototyping and preliminary clinical validations, market analysis and industrialization, to the first sale. As no technology will find the path to commercialization by itself, long-term commitment is key.”

Entrepreneurship is an effective way to increase the odds, by having a single actor transitioning and playing both roles. While this strategy requires a double commitment in terms of time and risk taking, it may lead to a higher potential reward for the researcher.”

“It’s certainly a positive development that PhD students and postdocs now have a third option to consider besides staying in academia or taking a job in industry — that of becoming an entrepreneur — and an increasing number of great examples of entrepreneurs and start-up role models exist.”

“If personal motivation and commitment to entrepreneurship are present, the start-up route is the way to go. It’s important to understand that many TTOs do not create start-ups. Researchers, as “founders”, do it.”

A big thank you to my dear former colleagues in Switzerland for mentioning this very much needed information.

Exclusive license vs. ownership of Intellectual Property

Intellectual Property (IP) is a sensitive and often cleaving topic. I have already addressed the topic here, check the hashstag #intellectual-preperty (or also #licensing). But even once the general value of IP is addressed, there are tons of secondary issues.

One is the specific question of how ownership of IP by a startup vs. an exclusive license granted by an academic institution is considered, in particular by investors. On January 27, 2022, I send an short email to 300+ investors and I got about a 10% response rate. In parallel, I mentioned the topic on my LinkedIn account and I got additional comments. Although, there is a rich argumentation about pros and cons of both situations, so that the reader may want to have a careful look at the full answers, here is my synthetic understanding:

There is no fundamental difference between license and transfer from the point of view of the startup’s strategy, except what happens in the event of bankruptcy or liquidation. The license is not an asset and therefore the intellectual property is no longer usable. With this nuance, admittedly significant, there are two additional points:
– Some investors think that the owner pays for the maintenance of the IP and suits the possible “infringers” to defend this property. I don’t think that’s the case because in my experience it’s the licensee who does that.
– In case of a trade sale, it is important that the license can be transmitted and this is a major item, that is to be guaranteed. There maybe political or strategic issues though.
Finally, a price for the transfer may be added when or if possible.
There is no doubt that the reputation of the institution and the stability of these acts are essential. (There would be more to add like equity vs. (capped or not) royalties in the license terms, milestones and many details… I tried to be as short as possible).

You can download here pdf file Survey on license vs ownership of IP.

Survey on license vs ownership of IP – Lebret – 1Feb2022

Google is not Stanford largest license revenue anymore

Until early this morning, I thought that the Google license (i.e. the rights Stanford University had granted the startup on the PageRank patent) was the largest generator of licensing revenue for the Californian university. I was wrong! If you read the annual reports of OTL, its Office of Technology Licensing, for example the pdf of the 2016 Annual Report, you may notice that the largest royalty revenue generator had another source: intellectual property/patents about functional monoclonal antibodies. Here are what these reports say of the largest amount of revenue in a given year from a single invention:
2016: $64M
2015: $62.77M
2014: $60.53M
2013: $55M
2012: $51M
2011: $44M
2010: $45M
2009: $38M
2008: $37M
2007: $33.5M
2006: $29M
These numbers give a total of $363M and another book mentions $125M cumulatively before 2006. But a more recent powerpoint document shows that the total cumulative revenue is … $613M!!

As a side note, in 2005, the Google patent gave proceeds of $336M following the company IPO. The 2004 and 2003 reports do not say the amount of the largest source of income whereas in 2002, it was “an unexpected $5.8M in one-time royalties” and in 2001, “for the first time in over 20 years, a physical science invention – an optical fiber amplifier – generated the most income”.

As Lita Nelsen from MIT said (see my previous post), “Even nationwide, you can show that tech transfer is, at best, a lottery if you want to make an ability to influence [a university’s financial position]. The primary winners—not 100 percent of them, but damn close—are single pharmaceuticals. Because if a pharmaceutical hits the market, it’s going to be in the multi-billon dollar [range]. The equity is seldom worth a lot, unless of course you can follow up with preferred investments. But that’s not what we’re in the business of doing. Any university that counts on its tech transfer to make a significant change in its finances is statistically going to be in trouble.” Google was a big exception with the equity proceeeds whereas the patent around monoclonal antibodies or the Cohen Boyer patent are about pharma. Have a look at the next figure from the same powerpoint document.

Interestingly enough I am reading a very interesting book (more when I am finished) which describes the early days of Silicon Valley and in particular the creation of the office of Technology Licensing by Niels Rimers.

In Troublemakers, author Leslie Berlin extensively describes the Cohen Boyer patent. In note 32 (page 450), she describes the terms of the Cohen-Boyer license. You can also find them in Lessons from the Commercialization of the Cohen-Boyer Patents: The Stanford University Licensing Program.

73 companies has signed for the initial $10k upfront payment, but “ten companies alone provided 77% (US$197 million) of the total licensing income” and 3 (Amgen, Genentech and Lily) provided close to 50% of the total. All this is well-known but I thought it would be interesting to blog about it today.

Two Challenges of Technology Transfer – Part 2, Get to Know Your TTO.

My second post about Technology Transfer (following the one about National Systems) is about the micro-economics of the activity. This is motivated by the very good Keys to the kingdom – subtitled What you need to know about your technology transfer office.

Before summarizing its content, let me remind you about the posts which already cover the topic so you will agree it’s not a new topic for me and I consider it as important:
– University licensing to start-ups in May 2010 (www.startup-book.com/2010/05/04/university-licensing-to-start-ups) followed by
– University licensing to start-ups (Part 2) in June 2010 (www.startup-book.com/2010/06/15/university-licensing-to-start-ups-part-2)
– How much Equity Universities take in Start-ups from IP Licensing? in November 2013 (www.startup-book.com/2013/11/05/how-much-equity-universities-take-in-start-ups-from-ip-licensing)
– Should universities get rich with their spin-offs? in June 205 (www.startup-book.com/2015/06/09/should-universities-get-rich-with-their-spin-offs)

bioe2015

Co-authored by 18 people from Stanford, Oxford, Harvard, the University of California in San Francisco and the University College London, the article describes what should know people interested in getting a license on intellectual property to create a start-up. The paper begins with “As an academic […]entrepreneur, you will face many challenges” and the second paragraph follows with “In addition, you will most likely have to negotiate with your university’s technology transfer office (TTO) to license the intellectual property (IP) related to your research”.

What are these challenges related to TTO? they are written in the article in bold fonts as follows: Overcoming information asymmetries – Long negotiations – Inexperience – Lack of funding – Conflict of interest rules – Experienced legal counsel. This means that as a future entrepreneur, you should be prepared and ideally be knowledgeable about these.

The challenges

The main challenge seems to be the administrative complexity and opacity (page 1), including confidentiality of contracts, which makes it difficult for outside observers to understand fair market terms (page 1 again). In the end, they nearly conclude with: “Indeed, even for the universities for whom we have data regarding equity policies, it was often hidden deep within a jumble of legalese. To that end we encourage universities and research institutes receiving public monies to be fully transparent in their equity and royalty policies, and not use these information asymmetries as a bargaining advantage against fledgling […]entrepreneurs.”

On page 2, I note:
– A negotiation may be long (6-12 months, even 18 months) and one way to make it short is to take the proposed terms.
– A way to mitigate inexperience is by “preparing an adequate business plan or strategy for your IP before approaching your TTO” or by “bringing aboard team members with prior experience in […] commercialization to improve your team’s credibility”.
Lack of funding can be partially solved by signing “license option agreements”.
Conflict of interest rules “exist to prevent academics from playing both sides of a technology licensing deal or devoting too much time to nonacademic obligations”. Furthermore, “TTOs represent the interests of the university (not the academic), yet the academic is technically an employee of the university. “Our policy is to never negotiate directly with the faculty,” says a US-based TTO representative”.
– Experienced legal counsel is advised for assessing the quality of the IP but also because “[…]entrepreneurs often fail to appreciate the opportunity cost to the TTO in outlicensing. If a technology is licensed to an ineffective team (particularly with an exclusive license), the university forgoes any success or revenue it may have received from licensing the technology to a better organized industry partner. Moreover, universities have limited resources and manpower to protect IP, and, for this reason, prefer to license technology to teams they believe are well prepared to commercialize it.”

The equity deal terms

“Perhaps the most striking difference between the United States and United Kingdom is seen with equity deal terms. In the United Kingdom, a typical licensing deal is a rarely negotiable 50:50 split between the university and the academic […]entrepreneur, whereas US interviewees often reported universities taking a 5–10% negotiable equity share.”

You now understand why I said I was not convinced in my previous post about taking the UK as a reference. The US practice shows space for debate. You may check again my article from November 2013, where you will see that a typical deal is either 10% at creation or 5% after significant funding. Very rarely more.

Again the authors mention “US founders often do not realize that some deal terms are negotiable, including upfront fees, option payments, equity, royalty payments, milestone payments, territories covered, field of use and exclusivity versus nonexclusivity” and “In the UK, licensing deal equity terms are often perceived as being non-negotiable, though this is not always the case. In fact, many institute policies explicitly state that equity terms are negotiable.” This may however make the process lengthier.

On page 4, the authors add: “It is difficult to understand the justification of UK TTOs, such as Oxford’s Isis Innovation, taking 50% of a company’s equity at formation — which after investment can leave the academic entrepreneur with an extremely low stake from the get-go, for what was likely years of work, and will require many years and millions more to develop.” and indeed “The data would suggest that TTOs taking less upfront and leaving more to the academic and investors who will actually carry the idea forward pays off in the long term. Simply put: holding a smaller piece of something is still more valuable than a large piece of nothing.”

The mystery of royalties

“It is also worth noting that while a discussion on royalties was outside the scope of this study, it was clear from our research that many university TTOs “double dip” and take significant equity and royalty.” but again “Perhaps more disquieting than the out-sized equity and royalty stakes that universities are claiming is the lack of transparency from many universities on this critical issue.”

My conclusion: any wannabe entrepreneur should read this short 5-page paper and be prepared to negotiate. I would love as much as the authors that universities and research institutes be fully transparent in their equity and royalty policies, though I am also aware of the possibly weakened position of universities which would do so.

Should universities get rich with their spin-offs?

The issue is discussed in the June 2015 issue of Horizons, the research magazine of the Swiss National Science Foundation, to which I was asked to participate.

Dozens of startups are launched every year in Switzerland to commercialize the results scientific research funded in large part by the State. Should universities that have supported them become rich in case of commercial success?

Yes, says the politician Jean-François Steiert.
Horizons-Debat-Spinoffs-1-en

Over the last twenty years, about a thousand companies, mostly small, contributed to the success of Switzerland. The majority of them are successful, although investors, inclined to take risks, are rare in Switzerland as compared for example to the United States. Most of the time the spin-offs are supported by taxpayer money, in terms of infrastructure, social networks, scholarships or coaching services. The objective of this kind of public investment is primarily to encourage employment and research.

With the support from public funds, these innovations generate through sales or patents significant benefits in the order of tens or hundreds of millions of francs. The public, as an investor, must be able to require a portion of those profits. Not to allow the State or the universities to get rich, but to reinvest these funds in fostering the next generation of researchers.

At a time when the Confederation and the cantons implement programs of savings due to exaggerated tax cuts, additional funds must be generated in this way and support young researchers in the economic development of their innovations.

“The public, as an investor, must be able to require a portion of the profit.” Jean-François Steiert

When the sale of patents is concerned, it is not a question of aiming for the maximum return, nor of making profits with a unique key. Universities need flexibility to optimize the return. On the one hand, we need the creation and management of start-ups to remain attractive. On the other, one must reinvest adequately in the next generation of researchers.

What is lacking today is transparency. If universities want to maintain the confidence of the taxpayer, they must declare how much money is generated by their successful startups. This information, they owe it to the taxpayer who, rightly, wants to know if her money is well invested in research, a key area for Switzerland.

Jean-François Steiert (PS) is a member of the National Council since 2007 and member of the Commission for Science, Education and Culture.

No replies Hervé Lebret, manager of an EPFL investment fund.
Horizons-Debat-Spinoffs-2-en

When Marc Andreessen launched Netscape in 1993, one of the first Web browsers, the 22-year old American chose to start from scratch rather than sign a license with the University of Illinois, the conditions of which he considered abusive. Instead, Stanford University had less tensed relations with the founders of Google, taking a modest 2% stake (which become $336 million six years later at the company IPO). The same university asked nothing to Yahoo! as it considered that the founders had developed the web ite on their spare time. A few years later, one of the founders of Yahoo! made a gift of $ 70 million to Stanford – whereas Andreessen does not want to hear anything about his alma mater.

These examples show how the relationships between universities and corporations can worsen when they do not share the same perception of the value of a knowledge transfer. The latter is often free when it comes to education; but when it comes to entrepreneurship, the overwhelming majority of people think it should not be. Nevertheless, an indirect return already exists: first in the form of taxes and, more importantly, through the hundreds of thousands of jobs created by start-ups. Their value is ultimately much higher than the tens of millions of dollars reported each year by the best American universities from their licenses.

“Abusive conditions can discourage the entrepreneur even before she starts.” Hervé Lebret

How then to define a fair retribution for universities? The subject is sensitive, but poorly understood, partly because of a lack of transparency from the different actors. In 2013, I published an analysis of the terms of public licenses from thirty startups [1]. It shows that universities hold on average a 10% equity stake at the creation of the start-up, which is diluted to 1-2% after the first financing rounds.

It is impossible to know in advance the commercial potential of a technology. We must first ensure that it is not penalized by excessive license terms. Abusive conditions can discourage the entrepreneur even before she starts and discourage investors. And thus kill the goose in the bud.

[1] http://bit.ly/lebrstart

Hervé Lebret is a member of the Vice President for Innovation and Technology Transfer at EPFL and manager of the Innogrants, an innovation fund from EPFL in Lausanne.

How much Equity Universities take in Start-ups from IP Licensing?

How much equity universities take in start-ups for a license of intellectual property? It is sometimes not to say often a hot topic and information is not easy to obtain. However there are some standards or common practice. I have already published posts on the topic: University licensing to start-ups in May 2010 followed by a Part 2 in June 2010.

To oversimplify, I used to say that the license was made of 3 components:
– first, universities take about 5% post-series A (a few million $) or similarly about 10% at creation (investors often take half of the company at round A,)
– second, there is also a royalty based on sales of products using the licensed technology, about 2% but the range might be 0.5% to 5%. A minimum yearly amount is usually asked for, like $10k or more.
– third, a small but important detail: start-ups pay for the maintenance of the IP from the date of the license.

I decided to look at data again through the S-1 documents, which start-ups write when they prepare their Initial Public Offering (IPO), usually on Nasdaq. I found about 30 examples of academic spin-offs which gave details about the IP license. Here is the result.

University-licenses-data
(Click on picture to enlarge)

A couple of comments:
This was not an easy exercise and I would not claim it is mistake-free. You should read it as indicative only, hopefully it is mostly accurate! Assuming the data is accurate, universities own about
– 10% at creation or
– 5% post–series A (average: $5M)
– Universities keep a 1-2% equity stake at exit,
– Worth a few $M (Median is $1M)
With an average of $70M VC investment and market value in the $1B range (Median is $300M)
(Median values are as important as Averages).
Royalties are in the 1-4% range.
All this is consistent with information given in my prior posts!

You can also check the following Slideshare document

University licensing to start-ups – part 2

As an addition to the post, dated May 4, 2010, I’d like to add a few slides which describe visually the balance between royalties and equity (with some possible antidilution). If you did not have the previous pdf slides, you should check my previous post first. What these new slides show are linear variations of the equity-royalty (possible) balance.

It may not be universally accepted, but in a way more royalty induces less equity and more equity induces less royalty. Also there may be an anti-dilution mechanism:
– many universities state the equity level will stay the same up to a given amount of money invested or up to the 1st round of funding. Given the habit of investors of taking 30-50% of the company after the 1st round, you can compute back how much equity it would have been at incorporation.
– one university, UNC, and I mentioned that in the comment to my post, asks for antidilution until exit at the 0.75% level. Interesting!

What is also interesting is that globally, Stanford, Caltech, Carnegie Mellon and UNC are very similar (small royalties) and MIT may appear as similar for equity but higher for royalties. All this should be handled with care but is probably not too far from a good summary…

So my visuals are not perfect, neither my comments above, but if I am not clear, just contact me! You can download the pdf slides or click on the picture that follows.

University licensing to start-ups

There’s been a long standing and passionate debate about what universities “deserve” when they license technologies to start-ups. There is the famous Google vs. Yahoo comparison where Google is an official Stanford spin-off which brought $336M in revenue from the equity the university owned in the start-up whereas Yahoo was considered as a hobby of the founders and no intellectual property was owned by the university. However one Yahoo founder gave some $75M to Stanford.

So what is a typical license between a university and start-up? Well there is no clear answer but the attached pdf file may be of help. I have done some search and found some info, mostly from US universities. I have also tried to find the rationals for or against such deals. The debate remains open and I do not expect a general agreement any time soon. But I hope this is contributing to the topic.