C’est le titre traduit d’un excellent article de la MIT Technology Review que l’on trouve en ligne: Will Machines Eliminate Us? J’en fournis ici une traduction tant je trouve qu’il vient contrebalancer l’avalanche de promesses et d’exubérance médiatiques et scientifiques…
Les gens qui craignent que nous soyons sur la point d’inventer des machines dangereusement intelligentes comprennent mal l’état de l’informatique.
par Will Knight – le 29 janvier 2016
Yoshua Bengio dirige l’un des groupes de recherche les plus avancés dans un domaine de l’intelligence artificielle (AI) en fort développement et connu sous le nom d’apprentissage profond ou « deep learning » (voir fr.wikipedia.org/wiki/Deep_learning). Les capacités surprenantes que le deep learning a données aux ordinateurs au cours des dernières années, de la reconnaissance vocale de qualité humaine à la classification des images jusque des compétences de conversation de base, ont généré des avertissements menaçants quant au progrès que l’AI fait vers l’intelligence humaine, au risque peut-être de même de la dépasser. Des personnalités comme Stephen Hawking et Elon Musk ont même averti que l’intelligence artificielle pourrait constituer une menace existentielle pour l’humanité. Musk et d’autres investissent des millions de dollars dans la recherche sur les dangers potentiels de l’AI, ainsi que sur les solutions possibles. Mais les déclarations les plus sinistres semblent exagérées pour nombre de gens qui sont en fait directement impliquées dans le développement de la technologie. Bengio, professeur de sciences informatiques à l’Université de Montréal, met les choses en perspective dans un entretien avec le rédacteur en chef de la MIT Technology Review pour l’AI et la robotique, Will Knight.
Faut-il se soucier de la rapidité des progrès de l’intelligence artificielle ?
Il y a des gens qui surestiment grossièrement les progrès qui ont été accomplis. Il y a eu beaucoup, beaucoup d’années de petits progrès derrière un grand nombre de ces choses, y compris des choses banales comme plus de données et plus de puissance de l’ordinateur. Le battage médiatique n’est pas de savoir si les choses que nous faisons sont utiles ou pas – elles le sont. Mais les gens sous-estiment combien la science doit encore faire de progrès. Et il est difficile de séparer le battage médiatique de la réalité parce que nous voyons toutes ces choses épatantes qui, à première vue, ont l’air magiques.
Y a t-il un risque que les chercheurs en AI « libérent le démon» accidentellement, comme Musk le dit ?
Ce n’est pas comme si quelqu’un avait tout à coup trouvé une recette magique. Les choses sont beaucoup plus compliquées que l’histoire simple que certaines personnes aimeraient raconter. Les journalistes aimeraient parfois raconter que quelqu’un dans son garage a eu cette idée remarquable, et puis qu’une percée a eu lieu, et tout à coup nous aurions l’intelligence artificielle. De même, les entreprises veulent nous faire croire à une jolie histoire : « Oh, nous avons cette technologie révolutionnaire qui va changer le monde – l’AI est presque là, et nous sommes l’entreprise qui va la fournir. » Ce n’est pas du tout commet cela que les choses fonctionnent.
Qu’en est-il de l’idée, au centre de ces préoccupations, que l’AI pourrait en quelque sorte commencer à s’améliorer d’elle-même et alors devenir difficile à contrôler?
Ce n’est pas comme cela que l’AI est conçue aujourd’hui. L’apprentissage automatique ou « machine learning » (voir fr.wikipedia.org/wiki/Apprentissage_automatique) est un processus lent et laborieux d’acquisition d’information à travers des millions d’exemples. Une machine s’améliore, oui, mais très, très lentement, et de manière très spécialisée. Et les algorithmes que nous utilisons ne ressemblent en rien à des virus qui s’auto-reproduiraient. Ce n’est pas ce que nous faisons.
« Il nous manque quelque chose de fondamental. Nous avons fait des progrès assez rapides, mais ils ne sont toujours pas au niveau où nous pourrions dire que la machine comprend. Nous sommes encore loin de cela. »
Quels sont quelques-uns les grands problèmes non résolus de l’AI?
L’apprentissage non supervisé est vraiment, vraiment important. En ce moment, la façon dont nous enseignons aux machines à être intelligentes est que nous devons dire à l’ordinateur ce qu’est une image, même au niveau du pixel. Pour la conduite autonome, l’homme étiquette des quantités gigantesques d’images de voitures pour montrer quelles parties sont des piétons ou des routes. Ce n’est pas du tout comme cela que les humains apprennent, et ce n’est pas comme cela que les animaux apprennent. Il nous manque quelque chose de fondamental. C’est l’une des choses les plus importantes que nous faisons dans mon laboratoire, mais il n’y a pas d’application à court terme – cela ne va probablement pas être utile pour construire un produit demain. Un autre grand défi est la compréhension du langage naturel. Nous avons fait des progrès assez rapides au cours des dernières années, c’est donc très encourageant. Mais ce n’est toujours pas au niveau où nous pourrions dire que la machine comprend. Ce serait vrai si nous pouvions faire lire un paragraphe à la machine, puis lui poser une question à ce sujet, et la machine répondrait d’une manière raisonnable, comme le ferait un humain. Nous sommes encore loin de cela.
Quelles approches au-delà de l’apprentissage profond seront nécessaires pour créer une véritable intelligence de la machine ?
Les efforts traditionnels, y compris le raisonnement et la logique – nous avons besoin de marier ces choses avec l’apprentissage profond afin d’avancer vers l’AI. Je suis l’une des rares personnes qui pensent que les spécialistes de l’apprentissage automatique, et en particulier les spécialistes de l’apprentissage profond, devraient accorder plus d’attention aux neurosciences. Les cerveaux fonctionnent, et nous ne savons toujours pas pourquoi à bien des égards. L’amélioration de cette compréhension a un grand potentiel pour aider la recherche en AI. Et je pense que les gens en neurosciences gagneraient beaucoup à s’intéresser à ce que nous faisons et à essayer d’adapter ce qu’ils observent du cerveau avec les types de concepts que nous développons en apprentissage automatique.
Avez-vous jamais pensé que vous auriez à expliquer aux gens que l’AI n’est pas sur le point de conquérir le monde? Cela doit être étrange.
C’est en effet une préoccupation nouvelle. Pendant de nombreuses années, l’AI a été une déception. En tant que chercheurs, nous nous battons pour rendre la machine un peu plus intelligente, mais elles sont toujours aussi stupides. Je pensais que nous ne devrions pas appeler ce domaine celui de l’intelligence artificielle, mais celui de la stupidité artificielle. Vraiment, nos machines sont idiotes, et nous essayons juste de les rendre moins idiotes. Maintenant, à cause de ces progrès que les gens peuvent voir avec des démos, nous pouvons maintenant dire: « Oh, ça alors, elle peut effectivement dire des choses en anglais, elle peut comprendre le contenu d’une image. » Eh bien, maintenant que nous connectons ces choses avec toute la science-fiction que nous avons vue, cela devient, « Oh, j’ai peur! »
D’accord, mais c’est tout de même important de penser dès maintenant aux conséquences éventuelles de l’AI.
Absolument. Nous devons parler de ces choses. La chose qui me rend le plus inquiet, dans un avenir prévisible, ce n’est pas que des ordinateurs prennent le pouvoir dans le monde entier. Je suis plus préoccupé par une mauvaise utilisation de l’AI. Des choses comme de mauvaises utilisations militaires, la manipulation des gens par le biais de publicités vraiment intelligentes; aussi, l’impact social, comme beaucoup de gens perdant leur emploi. La société a besoin de se réunir et de trouver une réponse collective, et ne pas laisser la loi de la jungle arranger les choses.
Will Knight est le rédacteur en chef pour l’AI de la MIT Technology Review. Il couvre principalement l’intelligence des machines, les robots, et l’automatisation, mais il est intéressé par la plupart des aspects de l’informatique. Il a grandi dans le sud de Londres, et a écrit sa première ligne de code sur un puissant Sinclair ZX Spectrum. Avant de rejoindre cette publication, il travaillait comme éditeur en ligne au magazine New Scientist. Si vous souhaitez entrer en contact, envoyer un e-mail à will.knight@technologyreview.com.
Crédit – Illustration par Kristina Collantes